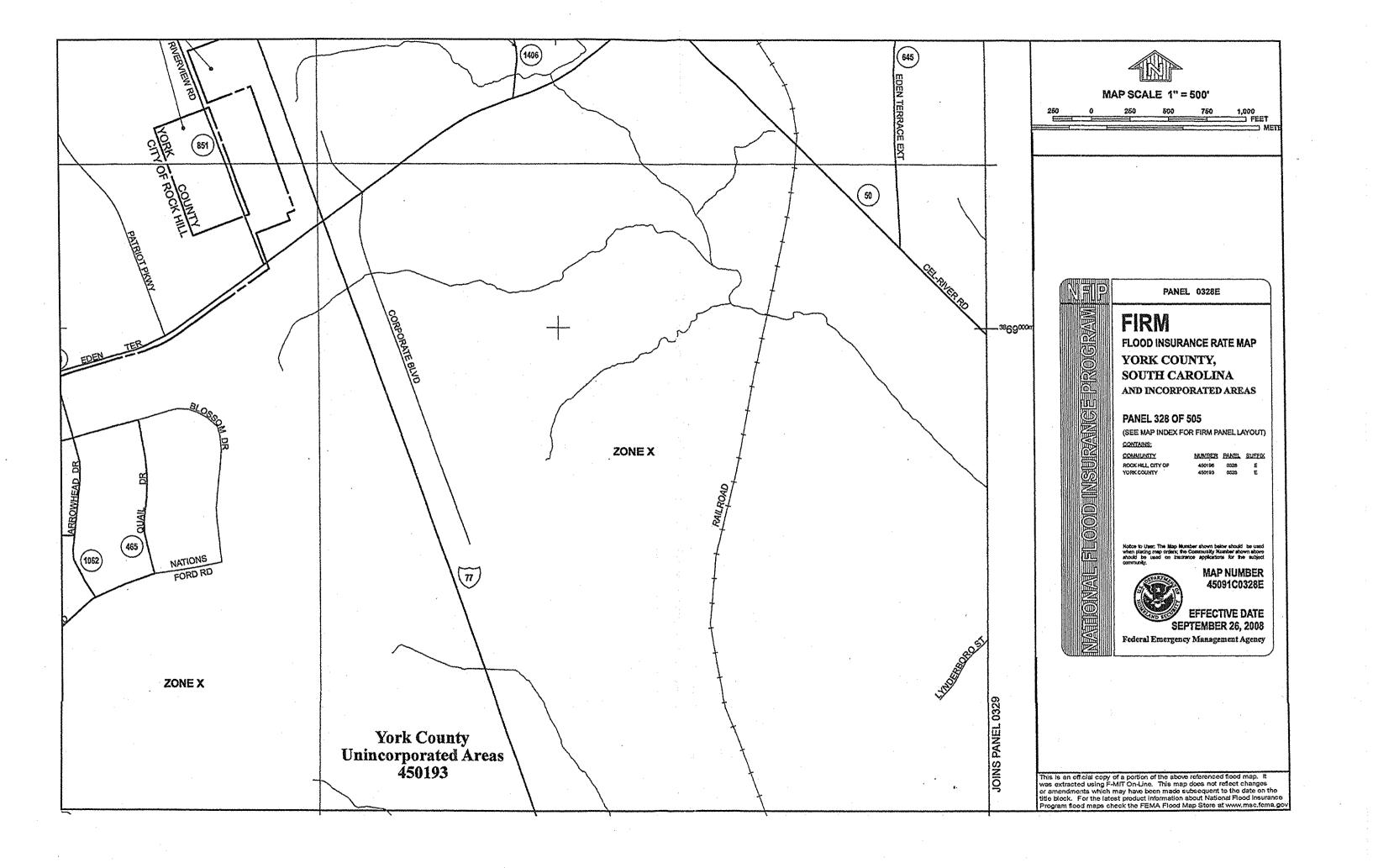
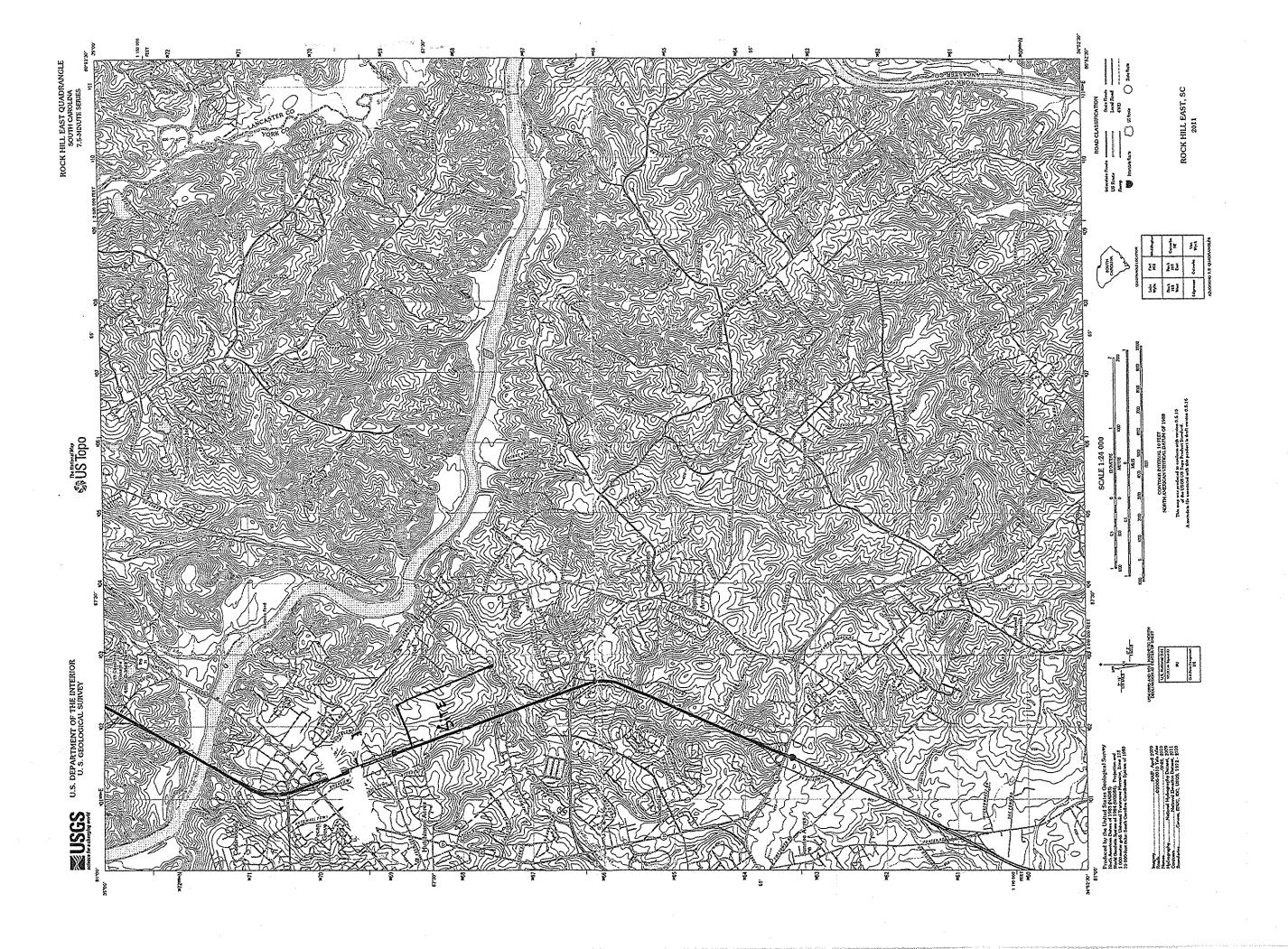
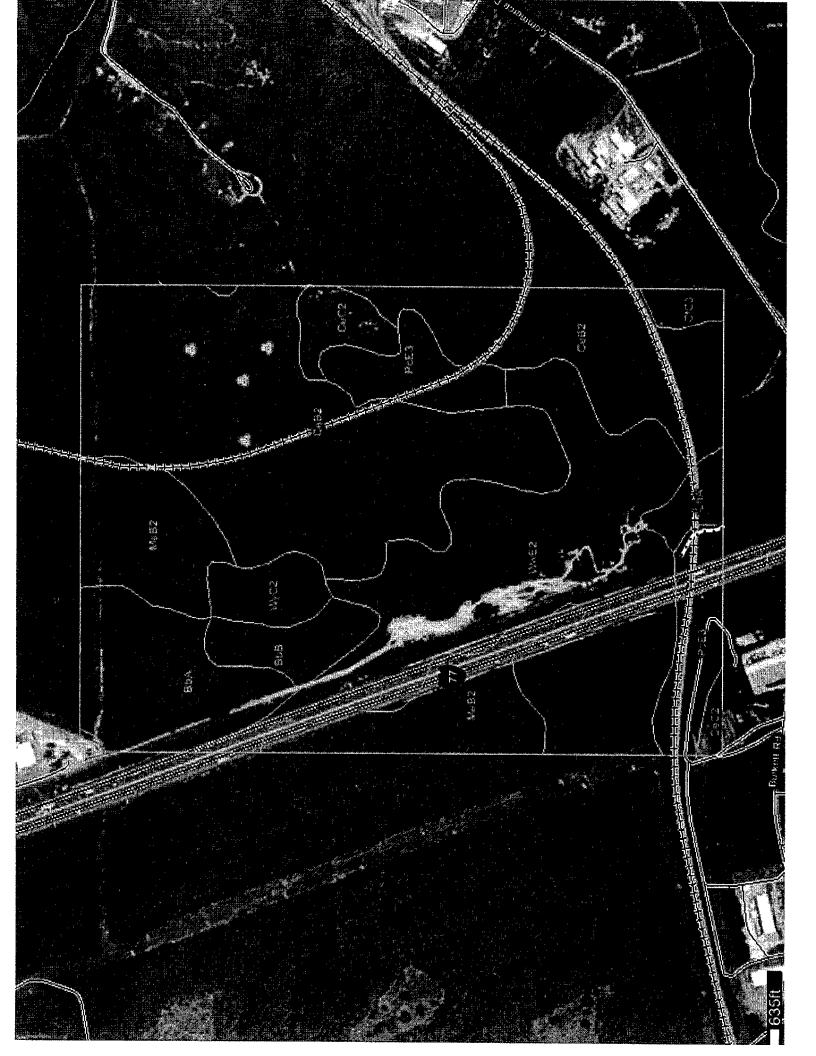
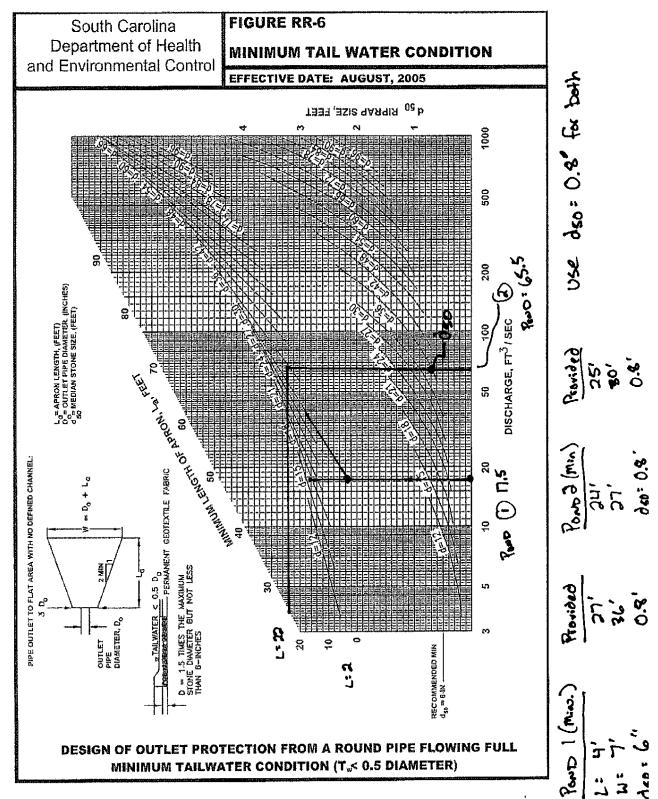

Project Gekko


Paragon Way Rock Hill, South Carolina


Project Calculations




Project Gekko

Paragon Way Rock Hill, South Carolina

Rip Rap Apron Calculations

Per 25 yr Storm

Figure 9.3.2.1: Design of Rip-Rap Apron Under Minimum Tailwater Conditions (Source: SCDHEC Manual)

Project Gekko

Paragon Way Rock Hill, South Carolina

Diversion Ditch Sizing

THE ISAACS GROUP Project Gekko Diversion Ditch Calculations

Storm pipe designed to handle the 10 year flow.

Rational Method used to determine the 10 year flow.

A minimum time of concentration of 5 minutes has been assumed in determining a rainfall intensity of 6.89 for the 10 year design storm.

See C4.1 for Drainage Area Map.

Diversion Ditch #1 A= 23.43 acres I= 6.89 in/hour C= 0.93 Q = (C)(I)(A) = Q (total)=	150.1 cfs 150.1 cfs
Diversion Ditch #2 A= 4.60 acres I= 6.59 in/hour C= 0.93 Q = (C)(I)(A) = Q (total)=	28.2 cfs 28.2 cfs
Diversion Ditch #3 A= 7.66 acres I= 7.03 in/hour C= 0.93 Q = (C)(I)(A) = Q (total)=	50.1 cfs 50.1 cfs

Diversion Ditch #1

tmp#4.txt

Channel Calculator

Given Input Data: Shape Solving for Flowrate Slope Manning's n Height Bottom width Left slope Right slope	Trapezoidal Depth of Flow 150.1000 cfs 0.0133 ft/ft 0.0175 2.0000 ft 10.0000 ft 3.0000 ft/ft (V/H) 3.0000 ft/ft (V/H)
Computed Results: Depth Velocity Full Flowrate Flow area Flow perimeter Hydraulic radius Top width Area Perimeter Percent full	1.3675 ft 10.4976 fps 273.8285 cfs 14.2985 ft2 12.8830 ft 1.1099 ft 10.9117 ft 21.3333 ft2 14.2164 ft 68.3757 %
Critical Information Critical depth Critical slope Critical velocity Critical area Critical perimeter Critical hydraulic radius Critical top width Specific energy Minimum energy Froude number Flow condition	1.8728 ft 0.0049 ft/ft 7.5439 fps 19.8968 ft2 13.9482 ft 1.4265 ft 11.2485 ft 3.0801 ft 2.8092 ft 1.6167 Supercritical

Diversion Ditch #2

tmp#2.txt

Channel Calculator

Given Input Data: Shape Solving for Flowrate Slope Manning's n Height Bottom width Left slope Right slope	Trapezoidal Depth of Flow 28.2000 cfs 0.0100 ft/ft 0.0175 2.0000 ft 10.0000 ft 3.0000 ft/ft (V/H) 3.0000 ft/ft (V/H)
Computed Results:	
Depth Velocity Full Flowrate Flow area Flow perimeter Hydraulic radius Top width Area Perimeter Percent full	0.5291 ft 5.2374 fps 237.4394 cfs 5.3843 ft2 11.1154 ft 0.4844 ft 10.3527 ft 21.3333 ft2 14.2164 ft 26.4551 %
Critical Information Critical depth	0.6232 ft 0.0059 ft/ft 4.4329 fps 6.3615 ft2 11.3138 ft 0.5623 ft 10.4155 ft 0.9554 ft 0.9348 ft 1.2803 Supercritical

Diversion Ditch #3

tmp#3.txt

Channel Calculator

Given Input Data: Shape Solving for Flowrate Slope Manning's n Height Bottom width Left slope Right slope	Trapezoidal Depth of Flow 50.1000 cfs 0.0100 ft/ft 0.0175 2.0000 ft 10.0000 ft 3.0000 ft/ft (V/H) 3.0000 ft/ft (V/H)
Computed Results:	
Depth Velocity Full Flowrate Flow area Flow perimeter Hydraulic radius Top width Area Perimeter Percent full	0.7540 ft 6.4818 fps 237.4394 cfs 7.7293 ft2 11.5895 ft 0.6669 ft 10.5027 ft 21.3333 ft2 14.2164 ft 37.6991 %
Critical Information	n
Critical depth Critical slope Critical velocity Critical area Critical perimeter Critical hydraulic radius Critical top width Specific energy Minimum energy Froude number Flow condition	0.9112 ft 0.0054 ft/ft 5.3363 fps 9.3884 ft2 11.9209 ft 0.7876 ft 10.6074 ft 1.4069 ft 1.3668 ft 1.3321 Supercritical

Project Gekko

Paragon Way Rock Hill, South Carolina

Sediment Basin Calculations

POND 1

THE ISAACS GROUP

Project Gekko

Rock Hill, South Carolina

RISER BASIN DESIGN & CALCS. (CLEARING AND GRUBBING)

BASIN NO. 1 (PRE-DEVELOPED)

SEDIMENT TRAPPING EFFICIENCY CALCULATION

Wilkes soil-type primarily found on-site.

D15. 0.0058 mm (Soil partial size for WwE2) SCDHEC BMP HANDBOOK (E19-App E)
V15. 0.000945 ft/sec. (Settling Velocity for WwE2) SCDHEC HANDBOOK** (Figure 1 pg 49)

Ratio = 220000 desired "ratio" for 80% trapping efficiency

q_{po} = 4.65 ft³/sec maximum peak outflow SEE BASIN CALCULATIONS BELOW
A= 2.09 acres

Ratio= <u>qpo</u> A*V15

Ratio= 23552.87 **OK**

Trapping Efficiency= 89 00% See Figure SB-1

BASIN CALCULATIONS

 DRAINAGE AREA TO BASIN=
 1,883,534 ft²

 DRAINAGE AREA TO BASIN=
 43.24 ac

 DISTURBED AREA TO BASIN=
 38.96 ac

 DEPTH=
 8.00 ft

 SIDE SLOPE=
 3 1

_	Contour Elev	Area (sq ft)	Volume (cu ft)	Total (cu ft)	
Bottom:	549.00	43,374		-	
	550 00	47,647	45,511	45,511	
	551.00	52,035	49,841	95,352	
	552 00	56,233	54,134	149,486	
	553.00	61,147	58,690	208,176	
	554.00	75,571	68,359	276,535	
	555.00	81,931	78,751	355,286	
	556.00	86,433	84,182	439,468	
	557.00	91,005	88,719	528,187 <	10 YR STORM
	558.00	95,647	93,326	621,513	
	559.00	100,359	98,003	719,516	
	560.00	105,140	102,750	822,265	

BASIN VOLUME REQUIRED 155,663.97 ft³ 3600 ft3 x DRAINAGE AREA BASIN VOLUME PROVIDED= 528,186.50 ft³ GREATER THAN MINIMUM, O.K. AREA AT 10 YEAR STORM 91,005.00 ft² % IMPERVIOUS= 0 % RUNOFF COEFFICIENT= 0.93 TIME OF CONCENTRATION= 5.00 min 10 YR. STORM INTENSITY= 6.89 in/hr S.C. RAINFALL DATA Q10_{IN}= 277.07 ft³/sec 4.65 ft³/sec Q10_{OUT} Qpo

LO FROM PONDPAK

5/1/13

^{*}Refd. Erosion Related Information for South Carolina Soils

^{**}Refd: South Carolina Stormwater Management and Sediment Control Handbook for Land Disturbance Activates (August 2003)

Type.... Master Network Summary Page 1.01

Name.... Watershed

File.... P:\PONDPACK\13020\13020-EC POND1.PPW

MASTER DESIGN STORM SUMMARY

Default Network Design Storm File, ID STORMS.RNQ York Co SC 24 Hr

Return Event	Total Depth in	Rainfall Type	RNF File	RNF ID
2	3.6000	Synthetic Curve	DETENT	SCS Type II SCS Type II SCS Type II SCS Type II
10	5.3000	Synthetic Curve	DETENT	
25	6.3000	Synthetic Curve	DETENT	
100	7.9000	Synthetic Curve	DETENT	

MASTER NETWORK SUMMARY SCS Unit Hydrograph Method

(*Node=Outfall; +Node=Diversion;)
(Trun= HYG Truncation: Blank=None; L=Left; R=Rt; LR=Left&Rt)

Storage			Return	HYG Vol		Qpeak	Qpeak	Max WSEL	Max Pond
Node ID ft		Type	Event	ac-ft	Trun	hrs	cfs	ft	ac-
				<u> </u>					
B-POSTDEVELO B-POSTDEVELO			2 10	10.203 16.189		11.9000 11.9000	179.12 277.45		
B-POSTDEVELO B-POSTDEVELO			25 100	19.742 25.451		11.9000 11.9000	334.72 425.71		
C-POND1 C-POND1	IN IN	POND POND	2 10	10.203 16.189		11.9000 11.9000	179.12 277.45		
C-POND1 C-POND1	IN IN	POND POND	25 100	19.742 25.451		11.9000 11.9000 11.9000	334.72 425.71		
C-POND1	OUT	POND	2	10.197		15.3000	3.83	554.42	
7.107 C-POND1 11.805	OUT	POND	10	16.163		16.3000	4.65	556.84	
C-POND1 14.689	OUT	POND	25	19.689		17.6500	5.05	558.19	
C-POND1 16.272	OUT	POND	100	25.383		12.7500	26.66	558.89	
*E-POST-OUT *E-POST-OUT *E-POST-OUT *E-POST-OUT		JCT JCT JCT	2 10 25 100	10.197 16.163 19.689 25.383		15.3000 16.3000 17.6500 12.7500	3.83 4.65 5.05 26.66		

S/N: C21B02A06A82

PondPack Ver. 7.5 (786c) Compute Time: 20:26:19 Date: 06/11/2013

Volume Required: 10 yr Storm: 155,664 CF

Qd: V/td Qd: Flow

td: 3 days V: Volume

Qd: 155,664 CT : 51,888 CF/day

3 days

Use AN 8" Skimmer

Hend: 0.50'

D: V Gd/(2310.VH)

= \(\sum{51,888} \) (2310.VH)

: 5.63" min

Use an 8" orifice - per pondpak

POND 2

THE ISAACS GROUP

Project Gekko

Rock Hill, South Carolina

RISER BASIN DESIGN & CALCS. (CLEARING AND GRUBBING)

BASIN NO. 2 (PRE-DEVELOPED)
SEDIMENT TRAPPING EFFICIENCY CALCULATION

 Wilkes
 soil-type primarily found on-site.

 D1s:
 0.0058 mm
 (Soil partial size for WwE2)

 V1s:
 0.0000945 ft/sec.
 (Settling Velocity for WwE2)

 Ratio =
 220000
 desired "ratio" for 80% trapping expressions.

SCDHEC BMP HANDBOOK (E19-App. E) SCDHEC HANDBOOK** (Figure 1 pg 49)

5/1/13

Ratio = 220000 desired "ratio" for 80% trapping efficiency
qpo = 5.03 ft³/sec maximum peak outflow
A= 0.52 acres

SEE BASIN CALCULATIONS BELOW

Ratio= <u>qpo</u>

A*V15

Ratio= 102360.60

Ratio= 102360.60 OK Trapping Efficiency= 87 00%

See Figure SB-1

BASIN CALCULATIONS

DRAINAGE AREA TO BASIN= 592,416 ft²
DRAINAGE AREA TO BASIN= 13.60 ac.
DISTURBED AREA TO BASIN= 13 60 ac.
DEPTH= 9.50 ft
SIDE SLOPE= 3 1.1

_	Contour Elev.	Area (sq ft)	Volume (cu ft)	Total (cu ft)	
Bottom :	543.00	3,570			
	544.00	4,627	4,099	4,099	
	545.00	5,796	5,212	9,310	
	546.00	7,079	6,438	15,748	
	547.00	8,474	7,777	23,524	
	548.00	13,092	10,783	34,307	
	549 00	15,298	14,195	48,502	
	550.00	16,811	16,055	64,557	
	551.00	18,381	17,596	82,153	
	552 00	20,007	19,194	ىر 101,347	
	553.00	21,690	20,849	122,195	 10 YR STORM
	554.00	23,429	22,560	144,755	
	555.00	25,225	24,327	169,082	

BASIN VOLUME REQUIRED 48,960.00 ft³ 3600 ft3 x DRAINAGE AREA BASIN VOLUME PROVIDED= 111,771.00 ft³ GREATER THAN MINIMUM, O.K. AREA AT 10 YR STORM 18,381.00 ft² % IMPERVIOUS= RUNOFF COEFFICIENT= 0.93 TIME OF CONCENTRATION= 5.00 min 10 YR STORM INTENSITY= 6.89 in/hr S.C. RAINFALL DATA Q10_{IN}= 87.14 ft³/sec 5.03 ft /sec -> per ponpak Q₁₀_{OUT} Qpo

^{*}Refd: Erosion Related Information for South Carolina Soils

^{**}Refd: South Carolina Stormwater Management and Sediment Control Handbook for Land Disturbance Activates (August 2003)

Type.... Master Network Summary Page 2.01

Name.... Watershed

File.... P:\PONDPACK\13020\13020-EC POND2.PPW

MASTER DESIGN STORM SUMMARY

Default Network Design Storm File, ID STORMS.RNQ York Co SC 24 Hr

Return Event	Total Depth in	Rainfall Type	RNF File	RNF ID
2	3 6000	Cunthatic Curva	DETENT	CCC T II
	3.6000	Synthetic Curve	DETENT	SCS Type II
10	5.3000	Synthetic Curve	DETENT	SCS Type II
25	6.3000	Synthetic Curve	DETENT	SCS Type II
100	7.9000	Synthetic Curve	DETENT	SCS Type II

MASTER NETWORK SUMMARY SCS Unit Hydrograph Method

(*Node=Outfall; +Node=Diversion;)
(Trun= HYG Truncation: Blank=None; L=Left; R=Rt; LR=Left&Rt)

	Return	HYG Vol		Qpeak	Qpeak	Max WSEL	Max Pond
Туре	Event	ac-ft	Trun	hrs	cfs	ft	ac-
-							
AREA	2	3.209		11.9000	56.34		
AREA	10	5.092		11.9000	87.27		
AREA	25	6.209		11.9000	105.28		
AREA	100	8.005		11.9000	133.90		
POND	2	3.209		11.9000	56.34		
POND	10	5.092		11.9000	87.27		
POND	25	6.209		11.9000	105.28		
POND	100	8.005		11.9000	133.90		
POND	2	3.209		12.5500	4.31	550.12	
POND	10	5.091		12.7000	5.03	552.51	
POND	25	6.209		12.9000	5.38	553.81	
POND	100	8.005		12.1000	44.14	554.51	
TOL TOL TOL TOL	2 10 25 100	3.209 5.091 6.209 8.005		12.5500 12.7000 12.9000 12.1000	4.31 5.03 5.38 44.14		
	AREA AREA AREA POND POND POND POND POND POND POND POND	Type Event AREA 2 AREA 10 AREA 25 AREA 100 POND 2 POND 10 POND 25 POND 100 POND 25 POND 100 POND 25 POND 100 JCT 2 JCT 10 JCT 25	Type Event ac-ft	Type Event ac-ft Trun AREA 2 3.209 AREA 10 5.092 AREA 25 6.209 AREA 100 8.005 POND 2 3.209 POND 10 5.092 POND 25 6.209 POND 10 8.005 POND 2 3.209 POND 10 5.091 POND 25 6.209 POND 10 5.091 POND 25 6.209 POND 10 5.091 JCT 2 3.209 JCT 10 5.091 JCT 25 6.209	Type Event ac-ft Trun hrs AREA 2 3.209 11.9000 AREA 10 5.092 11.9000 AREA 25 6.209 11.9000 AREA 100 8.005 11.9000 POND 2 3.209 11.9000 POND 10 5.092 11.9000 POND 25 6.209 11.9000 POND 20 3.209 11.9000 POND 2 3.209 12.5500 POND 100 5.091 12.7000 POND 25 6.209 12.9000 POND 2 3.209 12.5500 POND 10 5.091 12.7000 POND 25 6.209 12.9000 JCT 2 3.209 12.5500 JCT 10 5.091 12.7000 JCT 25 6.209 12.9000	Type Event ac-ft Trun hrs cfs AREA 2 3.209 11.9000 56.34 AREA 10 5.092 11.9000 105.28 AREA 25 6.209 11.9000 133.90 POND 2 3.209 11.9000 56.34 POND 10 5.092 11.9000 87.27 POND 25 6.209 11.9000 87.27 POND 25 6.209 11.9000 105.28 POND 100 8.005 11.9000 105.28 POND 100 8.005 11.9000 105.28 POND 2 3.209 12.5500 4.31 POND 10 5.091 12.7000 5.03 POND 2 3.209 12.5500 4.31 JCT 2 3.209 12.5500 4.31 JCT 2 3.209 12.5500 4.31 JCT 2 3.209 12.5500 4.31 JCT 2 3.209 12.5500 5.03 JCT 25 6.209 12.9000 5.38	Type Event ac-ft Trun hrs cfs ft AREA 2 3.209 11.9000 56.34 AREA 10 5.092 11.9000 105.28 AREA 25 6.209 11.9000 105.28 AREA 100 8.005 11.9000 133.90 POND 2 3.209 11.9000 87.27 POND 10 5.092 11.9000 87.27 POND 25 6.209 11.9000 105.28 POND 100 8.005 11.9000 105.28 POND 100 100 5.092 11.9000 105.28 POND 100 8.005 11.9000 105.28 POND 100 8.005 11.9000 133.90 POND 2 3.209 12.5500 4.31 550.12 POND 10 5.091 12.7000 5.03 552.51 POND 25 6.209 12.9000 5.38 553.81 POND 100 8.005 12.1000 44.14 554.51 JCT 2 3.209 12.5500 4.31 JCT 2 3.209 12.5500 5.03 JCT 10 5.091 12.7000 5.03 JCT 25 6.209 12.9000 5.38

S/N: C21B02A06A82

Pond 2
Volume Required: 10 yr Storm: 48,960 ct

Oo: 1/40 Od: Flow

to: 3 days V: Volume

Od: 48,960 ct

3 days

Use AN 8" stimmer

Hend: 0.50'

D: \(\int_0 \) \(\langle (2.310 \cdot \text{VH} \) = \(\langle \langle (3.320 \seft (2.310 \cdot \text{V.5} \) = \(3.16 \cdot \text{ min} \)

[USE an 8" orifice > per pouppak

THE ISAACS GROUP

Project Gekko

Rock Hill, South Carolina

Sediment Trap

BASIN NO. 3 (PRE-DEVELOPED)
SEDIMENT TRAPPING EFFICIENCY CALCULATION

 Wilkes
 soil-type primarily found on-site:

 D16.
 0.0058 mm
 (Soil partial size for WwE2)

 V15:
 0.000945 ft/sec.
 (Settling Velocity for WwE2)

Ratio = 220000 desired "ratio" for 80% trapping efficiency

qpo = 6.70 ft³/sec maximum peak outflow

 $q_{po} = 6.70$ ft^3/sec maximum peak outflow A= 0.81 acres

Ratio= <u>qpo</u>
A*V15
Ratio= 87242.40 **OK**

Trapping Efficiency= 85.00%

BASIN CALCULATIONS

 DRAINAGE AREA TO BASIN=
 166,235 ft²

 DRAINAGE AREA TO BASIN=
 3.82 ac

 DISTURBED AREA TO BASIN=
 3.82 ac

 DEPTH=
 3.50 ft

 SIDE SLOPE=
 3 11

Contour Area Volume Total Fiev (sq ft) (cu ft) (cu ft) Bottom: 548.00 6,175 549 00 7,428 6,802 6,802 550.00 8,760 8,094 14,896 551.00 10,161 9,461 24,356 552.00 11,626 10,894 35,250 553.00 13.154 12,390 47,640 553.50 13,678 6,708 54,348

> BASIN VOLUME REQUIRED 13,752.00 ft³ 3600 ft3 x DRAINAGE AREA BASIN VOLUME PROVIDED= 35,249.50 ft3 GREATER THAN MINIMUM, O.K. SURFACE AREA AT 10 YEAR ELEVATION 552.06 35,400.00 ft² % IMPERVIOUS= 0 % RUNOFF COEFFICIENT= 0.93 TIME OF CONCENTRATION= 5.00 min 10 YR. STORM INTENSITY= 6.89 in/hr S.C. RAINFALL DATA Q10_{IN}= 24.48 ft³/sec Q_{10_{OUT}} Qou 6.70 ft³/sec

5/1/13

SCDHEC BMP HANDBOOK (E19-App. E)

SCDHEC HANDBOOK** (Figure 1 pg. 49)

SEE BASIN CALCULATIONS BELOW

See Figure SB-1

^{*}Refd: Erosion Related Information for South Carolina Soils

^{**}Refd: South Carolina Stormwater Management and Sediment Control Handbook for Land Disturbance Activates (August 2003)

Type.... Master Network Summary Page 2.01

Name.... Watershed

File.... P:\PONDPACK\13020\13020-EC POND3.PPW

MASTER DESIGN STORM SUMMARY

Default Network Design Storm File, ID STORMS.RNQ York Co SC 24 Hr

Return Event	Total Depth in	Rainfall Type	RNF File	RNF ID
	-			
2	3.6000	Synthetic Curve	DETENT	SCS Type II
10	5.3000	Synthetic Curve	DETENT	SCS Type II
25	6.3000	Synthetic Curve	DETENT	SCS Type II
100	7.9000	Synthetic Curve	DETENT	SCS Type II

MASTER NETWORK SUMMARY SCS Unit Hydrograph Method

(*Node=Outfall; +Node=Diversion;)
(Trun= HYG Truncation: Blank=None; L=Left; R=Rt; LR=Left&Rt)

Storage			Return	HYG Vol		Qpeak	Qpeak	Max WSEL	Max Pond
Node ID ft		Туре	Event	ac-ft	Trun	hrs	cfs	ft	ac-
								-	
B-POSTDEVELO	PED1	AREA	2	. 901		11.9000	15.82		
B-POSTDEVELO			10	1.430		11.9000	24.51		
B-POSTDEVELO			25	1.744		11.9000	29.57		
B-POSTDEVELO	PED1	AREA	100	2.248		11.9000	37.61		
C-POND1	IN	POND	2	. 901		11.9000	15.82		
C-POND1	IN	POND	10	1.430		11.9000	24.51		
C-POND1	IN	POND	25	1.744		11.9000	29.57		
C-POND1	IN	POND	100	2.248		11.9000	37.61		
C-POND1 .695	OUT	POND	2	. 217		14.4000	. 45	551.54	
C-POND1 .827	OUT	POND	10	. 746		12.1000	6.70	552.06	
C-POND1 .925	OUT	POND	25	1.060		12.0500	13.63	552.41	
C-POND1 1.046	OUT	POND	100	1.564		12.0500	24.11	552.83	
*E-POST-OUT *E-POST-OUT *E-POST-OUT *E-POST-OUT		JCT JCT JCT JCT	2 10 25 100	.217 .746 1.060 1.564		14.4000 12.1000 12.0500 12.0500	.45 6.70 13.63 24.11		
			100	1.504		12.0300	24.11		

S/N: C21B02A06A82

PondPack Ver. 7.5 (786c) Compute Time: 10:16:30 Date: 06/13/2013

Project Gekko

Paragon Way Rock Hill, South Carolina

Water Quality Calculations

WETPOND CALCULATIONS

Pond Drainage Information:

Pond No.:	1	
Total Drainage Area-DA (Ac.) =	14.41	See Plan for delineation of Basins
Impervious Area-IA (Ac.) =	12 00	Total Proposed Impervious Area
Percent Impervious Area =	83.28	

Pond Stage-Storage Information:	
Perm. Water surface elevation =	547 35

- 1	_· · · · · · · · · · · · · · · · · · ·			_ 011 00			
	Elevation	Total Surface Area (s.f.)	Cummulative Det'n Volume (cu.ft.)	Cummulative Wet Volume (cu.ft.)	Forebay Surface Area (s.f.)	Forebay Cumulative Volume (cu. ft)	Percentage of total Volume (20% desired)
	543	3,570	0	0	780	0	
	544	4,627	0	4,099	1,150	965	
	545	5,796	0	9,310	1,576	2,328	
	546	7,079	0	15,748	2,059	4,146	
	547	8,474	0	23,524	2,598	6,474	
	547.35	9,163	0	26,610	0	0	
	548	15,298	7,950	34,560	0	0	
	549	16,811	24,004	50,615	0	0	
	550	18,381	41,600	68,211	0	0	
	551	20.007	60,794	87,405	0	0	
	552	21,690	81,643	108,253	0	0	
	553	23,429	104,202	130,813	0	0	
	554	25,225	128,529	155,140			
	555 5	26,129	167,045	193,655			0.00%

Permanent Pool Calculations:

Permanent Pool Elevation =	547.35	See Plan
FFV=	0.50	First flush runoff depth (in.)
Storage Required (acft.) =	0.50	=(FFV*IA) /12
Storage Required (cu. ft.) =	21,780	ok
Storage Provided (cu. ft.) =	23,524	

Temporary Water Quality Volume Calculations:

FFV =	0.500	First flush runoff depth (in.)
Storage Required (acft.) =	0.60	=(FFV*DA) /12
Storage Required (cu. ft.) =	26,154	
Temporary Water Quality Volume Provided @ elev.:	549.10	

THE ISAACS GROUP Project Gekko - Pond 1 CONCRETE ANCHOR BUOYANCY CALCULATION

Anti-flotation device for Outlet Structure

See Sheet CS.2 for detail

Height of riser (ft.) = Area of Riser (sf.) = Total Vol. of riser (cf) = Vol of Concrete (cf) = Wt. of structure (lb.) = Wt. of H ₂ O displaced (lb.) =	11.00 25 275.0 99.0 14850 17160.0	Top Elev.= 560.00 Bottom Elev.=549.00
Conc. pad thickness (in) = Conc. pad width/length (ft) = Vol. of conc. pad (cf) = Unit wt. of concrete (pcf) = Wt. of conc. pad (lb.) = Wt. of H ₂ O displaced =	24 12 288 150 43200 17971.2	12'Lx12'Wx24" Thick Concrete Pad
Wt. of H ₂ O displaced =	35131.2	

Factor of safety = $\frac{\text{Wt. Conc. Pad + Wt. of Strucutre}}{\text{Wt. of H}_2\text{O displaced}}$

F.S.= 1.65

WETPOND CALCULATIONS

Pond Drainage Information:

Pond No	1	
Total Drainage Area-DA (Ac.) =	43 24	See Plan for delineation of Basins
Impervious Area-IA (Ac.) =	28 28	Total Proposed Impervious Area
Percent Impervious Area =	65.40	

Pond Stage-Storage Information:

Perm. Water surface elevation =	553

Elevation	Total Surface Area (s.f.)	Cummulative Det'n Volume (cu.ft.)	Cummulative Wet Volume (cu.ft.)	Forebay Surface Area (s.f.)	Forebay Cumulative Volume (cu. ft.)	Percentage of total Volume (20% desired)
549	43,374	0	0	8.531	0	
550	47,647	0	45,511	9.637	9,084	
551	52,035	0	95,352	10,800	19,303	
552	56,533	0	149,636	12,018	30,712	
553	61.147	0	208,476	13.294	43,368	
554	75,571	68,359	276,835	0	0	
555	81,931	147,110	355,586	0	0	
556	86,433	231,292	439,768	0	0	
557	91,005	320,011	528,487	0	0	
558	95,647	413,337	621,813	0	0	
559	100,359	511,340	719,816	0	0	
560	105,140	614,090	822,565	0	0	

20 80%

Permanent Pool Calculations:

Permanent Pool Elevation =	553	See Plan
FFV=	0.50	First flush runoff depth (in.)
Storage Required (acft.) =	1.18	=(FFV*IA) /12
Storage Required (cu. ft.) =	51,328	ok –
Storage Provided (cu. ft.) =	208,476	

Temporary Water Quality Volume Calculations:

FFV =	0.500	First flush runoff depth (in.)
Storage Required (acft.) =	1.80	=(FFV*DA) /12
Storage Required (cu. ft.) =	78,481	,
Temporary Water Quality Volume Provided @ elev.:	554.09	

Project Gekko

Paragon Way Rock Hill, South Carolina

Detention Calculations

Name.... Watershed

File.... P:\PONDPACK\13020\3RD SUBMITTAL\13020-PB.PPW

MASTER DESIGN STORM SUMMARY

Default Network Design Storm File, ID STORMS.RNQ York Co SC 24 Hr

Return Event	Total Depth in	Rainfall Type	RNF File	RNF ID
2	3.6000	Synthetic Curve	DETENT	SCS Type II SCS Type II SCS Type II SCS Type II
10	5.3000	Synthetic Curve	DETENT	
25	6.3000	Synthetic Curve	DETENT	
100	7.9000	Synthetic Curve	DETENT	

MASTER NETWORK SUMMARY SCS Unit Hydrograph Method

(*Node=Outfall; +Node=Diversion;)
(Trun= HYG Truncation: Blank=None; L=Left; R=Rt; LR=Left&Rt)

Storage		Return	HYG Vol		Qpeak	Qpeak	Max WSEL	Max Pond
Node ID ft	Type	Event	ac-ft	Trun	hrs	cfs	ft	ac-
			-					-
*A-PRE-OUT	JCT	2	3.678		12.3000	26.32		
*A-PRE-OUT	JCT	10	8.831		12.2500	75.90		
*A-PRE-OUT	JCT	25	12.392		12.2500	110.27		
*A-PRÉ-OUT	JCT	100	18.626		12.2500	169.95		
A-PREDEVELOPED	AREA	2	3.678		12.3000	26.32		
A-PREDEVELOPED	AREA	10	8.831		12.2500	75.90		
A-PREDEVELOPED	AREA	25	12.392		12.2500	110.27		
A-PREDEVELOPED	AREA	100	18.626		12.2500	169.95		
B-POSTDEVELOPED1	AREA	2	7.580		11.9000	137.16		
B-POSTDEVELOPED1	AREA	10	13.138		11.9000	236.07		
B-POSTDEVELOPED1	AREA	25	16.525		11.9000	294.74		
B-POSTDEVELOPED1	AREA	100	22.040		11.9000	388.42		
B-POSTDEVELOPED2	AREA	2	3.281		11.9000	58.08		
B-POSTDEVELOPED2	AREA	10	5.263		11.9000	91.02		
B-POSTDEVELOPED2	AREA	25	6.442		11.9000	110.21		
B-POSTDEVELOPED2	AREA	100	8.339		11.9000	140.68		
BYPASS	AREA	2	. 546		12.0000	8.61		
BYPASS	AREA	10	1.371		11.9500	24.09		
BYPASS	AREA	25	1.951		11.9500	34.95		

S/N: C21B02A06A82 The Isaacs Group

Type.... Master Network Summary

Page 1.02

Name.... Watershed

File.... P:\PONDPACK\13020\3RD SUBMITTAL\13020-PB.PPW

MASTER NETWORK SUMMARY SCS Unit Hydrograph Method

(*Node=Outfall; +Node=Diversion;)
(Trun= HYG Truncation: Blank=None; L=Left; R=Rt; LR=Left&Rt)

Storage			Return	HYG Vol		Qpeak	Qpeak	Max WSEL	Max Pond
Node ID ft		Туре	Event	ac-ft	Trun	hrs	cfs	ft	ac-
								-	-
BYPASS		AREA	100	2.975		11.9500	53.78		
C-POND1	IN	POND	2	7.580		11.9000	137.16		
C-POND1	IN	POND	10	13.138		11.9000	236.07		
C-POND1	ΙN	POND	25	16.525		11.9000	294.74		
C-POND1	IN	POND	100	22.040		11.9000	388.42		
C-POND1 4.007	OUT	POND	2	7.577		12.6000	10.64	555.33	
C-POND1 7.347	OUT	POND	10	13.136		12.7500	15.32	557.00	
C-POND1 9.419	OUT	POND	25	16.522		12.8500	17.48	557.97	
C-POND1 11.756	OUT	POND	100	22.037		12.3000	47.63	559.01	
C-POND2	IN	POND	2	2 201		11 0000	F0 00		
C-POND2	IN	POND	10	3.281 5.263		11.9000 11.9000	58.08 91.02		
C-POND2	IN	POND	25	6.442		11.9000	110.21		
C-POND2	IN	POND	100	8.339		11.9000	140.68		
C-POND2 1.618	OUT	POND	2	3.280		12.1500	9.29	551.46	
C-POND2 2.358	OUT	POND	10	5.262		12.0500	36.66	552.93	
C-POND2 2.644	OUT	POND	25	6.441		12.0500	62.29	553.64	
C-POND2 2.913	OUT	POND	100	8.338		12.0000	104.26	554.17	
*E-POST-OUT		JCT	2	11.403		12.0000	25.52		
*E-POST-OUT		JCT	10	19.769		12.0500	67.26		
*E-POST-OUT		JCT	25	24.914		12.0000	103.85		
*E-POST-OUT		JCT	100	33.351		12.0000	171.09		

S/N: C21B02A06A82 The Isaacs Group

Type.... Tc Calcs Page 3.01

Name.... A-PREDEVELOPED

File.... P:\PONDPACK\13020\3RD SUBMITTAL\13020-PB.PPW

TIME OF CONCENTRATION ON SWITZE

TIME OF CONCENTRATION CALCULATOR

Segment #1: Tc: TR-55 Shallow

Hydraulic Length 1454.00 ft Slope .050000 ft/ft

Unpaved

Avg. Velocity 3.61 ft/sec

Segment #1 Time: .1119 hrs

Segment #2: Tc: TR-55 Sheet

Mannings n .8000 Hydraulic Length 100.00 ft 2yr, 24hr P 3.6000 in Slope .035000 ft/ft

Avg. Velocity .06 ft/sec

Segment #2 Time: .4697 hrs

Total Tc: .5816 hrs

S/N: C21B02A06A82 The Isaacs Group

Type.... Tc Calcs Page 3.02 Name.... A-PREDEVELOPED File.... P:\PONDPACK\13020\3RD SUBMITTAL\13020-PB.PPW -----Tc Equations used... Tc = (.007 * ((n * Lf)**0.8)) / ((P**.5) * (Sf**.4))Where: Tc = Time of concentration, hrs n = Mannings n Lf = Flow length, ft P = 2yr, 24hr Rain depth, inches Sf = Slope, % ==== SCS TR-55 Shallow Concentrated Flow ==================== Unpaved surface: V = 16.1345 * (Sf**0.5)Paved surface: V = 20.3282 * (Sf**0.5)Tc = (Lf / V) / (3600sec/hr)Where: V = Velocity, ft/sec Sf = Slope, ft/ft Tc = Time of concentration, hrs

S/N: C21B02A06A82 The Isaacs Group

Lf = Flow length, ft

Type Runoff CN-Area Name A-PREDEVELOPED				Page 4.01
File P:\PONDPACK\13020\3RD SUBM	1ITTAL	\13020-PB.	PPW	
RUNOFF CURVE NUMBER DATA	:::::	:::::::::	:::::::::	::::::::::
		-	Impervious	
Soil/Surface Description	CN	Area acres	Adjustment %C %UC	Adjusted CN
WOODED - B SOIL WOODED - C SOIL	55 70	31.125 31.125		55.00 70.00
COMPOSITE AREA & WEIGHTED CN>	:::::	62.250	::::::::::	62.50 (63)

 S/N: C21B02A06A82
 The Isaacs Group

 PondPack Ver. 7.5 (786c)
 Compute Time: 21:07:45 Date: 06/18/2013

Type Runoff CN-Area Name B-POSTDEVELOPED	Page 4.02			
File P:\PONDPACK\13020\3RD SUBM	1ITTAL\	13020-PB.	PPW	
RUNOFF CURVE NUMBER DATA				
	- 			
			Impervious	
Soil/Surface Description	CN	Area acres	Adjustment %C %UC	Adjusted CN
IMPERVIOUS	98	28.280		98.00
OPEN SPACE	61	14.960		61.00
COMPOSITE AREA & WEIGHTED CN>		43.240		85.20 (85)

 S/N: C21B02A06A82
 The Isaacs Group

 PondPack Ver. 7.5 (786c)
 Compute Time: 21:07:45 Date: 06/18/2013

Type.... Runoff CN-Area Page 4.03 Name.... B-POSTDEVELOPED2 File.... P:\PONDPACK\13020\3RD SUBMITTAL\13020-PB.PPW RUNOFF CURVE NUMBER DATA Impervious Area Adjustment Adjusted Soil/Surface Description CN acres %C %UC CN ______ 98 12.000 61 2.410 IMPERVIOUS 98.00 OPEN SPACE 61.00

91.81 (92)

COMPOSITE AREA & WEIGHTED CN ---> 14.410

5/N: C21B02A06A82 The Isaacs Group PondPack Ver. 7.5 (786c) Compute Time: 21:07:45 Date: 06/18/2013

Type.... Runoff CN-Area Page 4.04 Name.... BYPASS File.... P:\PONDPACK\13020\3RD SUBMITTAL\13020-PB.PPW RUNOFF CURVE NUMBER DATA -----Impervious Area Adjustment Adjusted Soil/Surface Description CN acres %C %UC CN 61 10.600 OPEN SPACE 61.00

COMPOSITE AREA & WEIGHTED CN ---> 10.600 61.00 (61)

S/N: C21B02A06A82 The Isaacs Group PondPack Ver. 7.5 (786c) Compute Time: 21:07:45 Date: 06/18/2013

Type.... Vol: Elev-Volume Name.... C-POND Page 5.01

File.... P:\PONDPACK\13020\3RD SUBMITTAL\13020-PB.PPW

USER DEFINED VOLUME RATING TABLE

Elevation (ft)	Volume (ac-ft)
553.00	.000
554.00	1.569
555.00	3.377
556.00	5.310
557.00	7.346
558.00	9.489
559.00	11.739
560.00	14.098

S/N: C21B02A06A82 The Isaacs Group PondPack Ver. 7.5 (786c) Compute Time: 21:07:45 Date: 06/18/2013

Type.... Vol: Elev-Volume Name.... C-POND2

File.... P:\PONDPACK\13020\3RD SUBMITTAL\13020-PB.PPW

USER DEFINED VOLUME RATING TABLE

Page 5.02

Elevation (ft)	Volume (ac-ft)
	
547.35	.000
548.00	. 183
549.00	. 551
550.00	. 955
551.00	1.396
552.00	1.874
553.00	2.392
554.00	2.783
555.00	3.540
555.50	3.835

 S/N: C21B02A06A82
 The Isaacs Group

 PondPack Ver. 7.5 (786c)
 Compute Time: 21:07:45 Date: 06/18/2013

Type.... Outlet Input Data

Name.... PR 10

File.... P:\PONDPACK\13020\3RD SUBMITTAL\13020-PB.PPW

REQUESTED POND WS ELEVATIONS:

Page 6.01

Min. Elev. = 553.00 ft Increment = .50 ft
Max. Elev.= 560.00 ft

************* OUTLET CONNECTIVITY ****************

---> Forward Flow Only (UpStream to DnStream) <--- Reverse Flow Only (DnStream to UpStream)

<---> Forward and Reverse Both Allowed

Structure	No.		Outfall	E1, ft	E2, ft
Inlet Box		>	CV	558.000	558.000
Weir-Rectangular		>	TW	558.500	560.000
Culvert-Circular	CV	>	TW	548.500	560.000
Orifice-Circular		>	CV	553.000	560.000
TW SETUP, DS Channel					

S/N: C21B02A06A82 The Isaacs Group

PondPack Ver. 7.5 (786c) Compute Time: 21:07:45 Date: 06/18/2013

Type.... Outlet Input Data

Name.... PR 10

Page 6.02

File.... P:\PONDPACK\13020\3RD SUBMITTAL\13020-PB.PPW

OUTLET STRUCTURE INPUT DATA

```
Structure ID =
Structure Type = Weir-Rectangular

# of Openings = 1
Crest Elev. = 558.50 ft
Weir Length = 25.00 ft
Weir Coeff. = 3.100000
```

Weir TW effects (Use adjustment equation)

S/N: C21B02A06A82 The Isaacs Group PondPack Ver. 7.5 (786c) Compute Time: 21:07:45 Date: 06/18/2013

Type.... Outlet Input Data Page 6.03

Name.... PR 10

File.... P:\PONDPACK\13020\3RD SUBMITTAL\13020-PB.PPW

OUTLET STRUCTURE INPUT DATA

```
Structure ID
                = CV
Structure Type = Culvert-Circular
No. Barrels =
                            1
Barrel Diameter = 3.0000 ft
Upstream Invert = 548.50 ft
Dnstream Invert = 548.05 ft
Horiz. Length = 83.00 ft
Barrel Length = 83.00 ft
Barrel Slope = .00542 ft/ft
OUTLET CONTROL DATA...
                      .0110
Mannings n =
Кe
                 =
                       .1000 (forward entrance loss)
Кb
                = .005175 (per ft of full flow)
Kr = .1000 (reverse entrance loss)
HW Convergence = .001 +/- ft
INLET CONTROL DATA...
Equation form =
Inlet Control K = .0098
Inlet Control M = 2.0000
Inlet Control c = .03980
Inlet Control Y = .6700
T1 ratio (HW/D) = 1.158
T2 ratio (HW/D) = 1.304
Slope Factor = -.500
```

Use unsubmerged inlet control Form 1 equ. below T1 elev. Use submerged inlet control Form 1 equ. above T2 elev.

In transition zone between unsubmerged and submerged inlet control, interpolate between flows at T1 & T2...

At T1 Elev = 551.97 ft ---> Flow = 42.85 cfs At T2 Elev = 552.41 ft ---> Flow = 48.97 cfs

S/N: C21B02A06A82 The Isaacs Group PondPack Ver. 7.5 (786c) Compute Time: 21:07:45 Date: 06/18/2013

Type.... Outlet Input Data

Name.... PR 10

Page 6.04

File.... P:\PONDPACK\13020\3RD SUBMITTAL\13020-PB.PPW

OUTLET STRUCTURE INPUT DATA

Structure ID Structure Type = Orifice-Circular -----# of Openings = 1
Invert Elev. = 553.00 ft
Diameter = 1.5000 ft
Orifice Coeff. = .600

Structure ID = TW Structure Type = TW SETUP, DS Channel

FREE OUTFALL CONDITIONS SPECIFIED

CONVERGENCE TOLERANCES... Maximum Iterations= 30 Min. TW tolerance = .01 ft Max. TW tolerance = .01 ft Min. HW tolerance = .01 ft Max. HW tolerance = .01 ft Min. Q tolerance = .10 cfs Max. Q tolerance = .10 cfs

Page 6.05 Name.... PR 10

File.... P:\PONDPACK\13020\3RD SUBMITTAL\13020-PB.PPW

RATING TABLE FOR ONE OUTLET TYPE

Structure ID = (Inlet Box) Upstream ID = (Pond Water Surface)
DNstream ID = CV (Culvert-Circular)

Elev. ft	Λ	HW HGL ft	DS HGI	DS HGL ft	Error +/-ft	Error	DS Chan. TW TW Error ft +/-ft
							Free Outfall
553.50	.00		an invert;				Free Outfall
554.00	.00		an invert;				Free Outfall
554.50	. 00		an invert;				Free Outfall
555.00	.00		an invert;				Free Outfall
555.50	.00		an invert;				Free Outfall
556.00	. 00		an invert;				Free Outfall
556.50	.00		an invert;				Free Outfall
557.00	.00		an invert;				Free Outfall
557.50	.00		an invert;				Free Outfall
558.00	. 00		an invert;			•	Free Outfall
558.50	. 00		E2= 558.0				Free Outfall
559.00	.00	 E = or >	E2= 558.0				Free Outfall
559.50	.00	E = or >	E2= 558.0				Free Outfall
560.00	.00	E = or >	E2= 558.0				Free Outfall

Page 6.06

Name....PR 10

File.... P:\PONDPACK\13020\3RD SUBMITTAL\13020-PB.PPW

RATING TABLE FOR ONE OUTLET TYPE

Structure ID = (Weir-Rectangular)
----Upstream ID = (Pond Water Surface)
DNstream ID = TW (Pond Outfall)

WS Elev,Device Q	Tail Water	Notes			
WS Elev. Q T	TW Elev Converge ft +/-ft	Computation Messages			
553.50 .00 F 554.00 .00 F 555.00 .00 F 555.50 .00 F 556.00 .00 F 556.50 .00 F 557.00 .00 F 557.50 .00 F 557.50 .00 F 558.00 .00 F 558.50 .00 F 559.00 27.40 F	Free Outfall	WS below an invert; no flow. H=.50; Htw=.00; Qfree=27.40; H=1.00; Htw=.00; Qfree=77.50;			

Name.... PR 10

Page 6.07

File.... P:\PONDPACK\13020\3RD SUBMITTAL\13020-PB.PPW

RATING TABLE FOR ONE OUTLET TYPE

Structure ID = CV (Culvert-Circular)

Mannings open channel maximum capacity: 62.43 cfs

UPstream ID's= , DNstream ID = TW (Pond Outfall)

Elav	Λ	(into) Con HW HGL DS ft	י ווכו ב הכיווכ	Г	F	DS Chan, TW ft	Error
			-				'/- L
553.00	.00					Free Outi	fall
		DEMADRE - Hee+	ream HW & DN	stream TW <	Inv.El		
553.50	. 98	548.92 F				Free Out	tfall
		CKII.DEPIH CO	NTROL Vh= .	104ft Dcr=	.306ft	CRIT.DE	
554.00	3.55	549.31 F	ree Free	.000	.003	Free Out	tfall
		CRIT.DEPTH CO	NTROL Vh= .	205ft Dcr=	.588ft	CRIT.DE	EPTH
554.50	7.37		ree Free	.000		Free Out	tfall
		CRIT.DEPTH CO				CRIT.DE	EPTH
555.00	9.50		ree Free			Free Out	
		CRIT.DEPTH CO				CRIT.DE	
555.50	11.25		ree Free				
.	45 76	CRIT.DEPTH CO				CRIT.	
556.00	12.76					Free Out	
FFC F0	4.4.4.4	CRIT. DEPTH CO			1.135ft		
556.50	14.11	-	ree Free		.005		
557.00	15.32	CRIT.DEPTH CO			1.196ft		
337.00	15.52		ree Free		.011	Free Out	ctall
557.50	16 40	CRIT.DEPTH CO 550.34 F	inirol vn	4/111 DET=	1.24911	CKII.L)EPIH
337.30	10.40	CRIT.DEPTH CO	NTPOL VA-	.000 492f+ Dar=	.UII 1 207f+	rree out	Tall
558.00	17 55	550.40 F	ree Frae	000	012	Eree Out	/C/171
330.00	17.55	INLET CONTROL	Fau 1:	HW =1.90	.013 dc=1 3/10	Ac=3 001	1 1 d L L
558.50	18.55		ree Free	.000	017	Free Out	
223.20		INLET CONTROL		HW =1.97			
559.00	19.48		ree Free	.000	009	Free Out	fall
		INLET CONTROL	Eau.1:	HW =2.03	dc=1.416	Ac=3.28	313
559.50	20.41		ree Free	.000	.014	Free Out	fall
		INLET CONTROL		HW =2.09			
560.00	21.27	550.64 F	ree Free	. 000	.004	Free Out	ifall
		INLET CONTROL	Equ.1:	HW =2.14	dc=1.482	Ac=3.48	304

Page 6.08

Name.... PR 10

File.... P:\PONDPACK\13020\3RD SUBMITTAL\13020-PB.PPW

RATING TABLE FOR ONE OUTLET TYPE

Structure ID = (Orifice-Circular) Upstream ID = (Pond Water Surface)
DNstream ID = CV (Culvert-Circular)

Elev. ft	0	(into) HW HGL ft	DS HGI	DS HGL	Error +/-ft	Error +/-cfs	TW ft	Error +/-ft
	.00						Free Out	
553.50	. 98	553.50 CRIT.DEPTH	Free	548.92	.000	.000 369ft	Free Out	fall FPTH
554.00	3.55	554.00 CRIT.DEPTH	Free	549.31	.000	.000	Free Out	fall
554.50	7.37	554.50 H = .75		549.69	.000		Free Out	
555.00		555.00 H =1.25	Free	549.86	.000	.000	Free Out	fall
555.50			Free	549.99	.000	.000	Free Out	fall
556.00	12.76	556.00 H =2.25	Free	550.10	.000	.000	Free Out	fall
556.50	14.10	556.50 H = 2.75	Free	550.19	.000	.000	Free Out	fall
557.00		557.00 H =3.25	Free	550.27	.000	.000	Free Out	fall
557.50	16.47	557.50 H =3.75	Free	550.34	.000	.000	Free Out	fall
558.00	17.53	558.00 H =4.25	Free	550.40	.000	.000	Free Out	fall
558.50		558.50 H =4.75	Free	550.47	.000	.000	Free Out	fall
559.00	19.49	559.00 H =5.25	Free	550.53	.000	.000	Free Out	fall
559.50	20.40	559.50 H =5.75	Free	550.59	.000	.000	Free Out	fall
560.00	21.26	560.00 H =6.25	Free	550.64	.000	. 000	Free Out	fall

Type.... Composite Rating Curve Name.... PR 10

File.... P:\PONDPACK\13020\3RD SUBMITTAL\13020-PB.PPW

***** COMPOSITE OUTFLOW SUMMARY ****

Page 6.09

WS Elev,		Canylanaa	Notes
	Q	TW Elev Error	Contributing Structures
553.50 554.00 554.50 555.00 555.50 556.00 556.50 557.00 557.50 558.00 558.50 559.00 559.50	.98 3.55 7.37 9.50 11.25 12.76 14.11 15.32 16.48 17.55 18.55 46.88 97.91	Free Outfall	CV, (no Q: ,)

S/N: C21B02A06A82 The Isaacs Group PondPack Ver. 7.5 (786c) Compute Time: 21:07:45 Date: 06/18/2013 Type.... Outlet Input Data

Name.... PR 20

File.... P:\PONDPACK\13020\3RD SUBMITTAL\13020-PB.PPW

REQUESTED POND WS ELEVATIONS:

Page 6.10

Min. Elev. = 547.35 ft Increment = .50 ft
Max. Elev.= 555.50 ft

*********** OUTLET CONNECTIVITY *************

---> Forward Flow Only (UpStream to DnStream) <--- Reverse Flow Only (DnStream to UpStream) <---> Forward and Reverse Both Allowed

Structure	No.		Outfall	E1, ft	E2, ft
Orifice-Circular		>	CV	547.350	555.500
Inlet Box		>	CV	553.700	555.500
Orifice-Circular		>	CV	549.250	555.500
Weir-Rectangular		>	⊤₩	554.000	555.500
Culvert-Circular	CV	>	TW	542.750	555.500
Weir-Rectangular TW SETUP, DS Channel		>	CV	551.750	555.500

S/N: C21B02A06A82 The Isaacs Group PondPack Ver. 7.5 (786c) Compute Time: 21:07:45 Date: 06/18/2013 Type.... Outlet Input Data Page 6.11

Name.... PR 20

File.... P:\PONDPACK\13020\3RD SUBMITTAL\13020-PB.PPW

OUTLET STRUCTURE INPUT DATA

```
Structure ID =
Structure Type = Orifice-Circular
  # of Openings = 1
Invert Elev. = 547.35 ft
Diameter = .5000 ft
Orifice Coeff. = .600
 Structure ID
 Structure Type = Inlet Box
# of Openings = 1
Invert Elev. = 553.70 ft
Orifice Area = 16.5900 sq.ft
Orifice Coeff. = .600
Weir Length = 14.68 ft
Weir Coeff. = 3.100
K, Submerged = .000
K, Reverse = 1.000
Kb, Barrel = .000000 (per ft of full flow)
Barrel Length = .00 ft
Mannings n = .0000
 Structure ID =
Structure Type = Orifice-Circular
  -----
 # of Openings = 1
Invert Elev. = 549.25 ft
Diameter = 1.2500 ft
Orifice Coeff. = .600
```

S/N: C21B02A06A82 The Isaacs Group PondPack Ver. 7.5 (786c) Compute Time: 21:07:45 Date: 06/18/2013

Type.... Outlet Input Data

Name.... PR 20

File.... P:\PONDPACK\13020\3RD SUBMITTAL\13020-PB.PPW

OUTLET STRUCTURE INPUT DATA

Structure ID

Structure Type = Weir-Rectangular

of Openings = 1
Crest Elev. = 554.00 ft
Weir Length = 25.00 ft
Weir Coeff. = 3.100000

Weir TW effects (Use adjustment equation)

Page 6.12

S/N: C21B02A06A82 The Isaacs Group PondPack Ver. 7.5 (786c) Compute Time: 21:07:45 Date: 06/18/2013 Type.... Outlet Input Data

Page 6.13 Name.... PR 20

File.... P:\PONDPACK\13020\3RD SUBMITTAL\13020-PB.PPW

OUTLET STRUCTURE INPUT DATA

```
Structure ID
                   = CV
Structure Type = Culvert-Circular
No. Barrels =
                                 1
Barrel Diameter = 3.0000 ft
Upstream Invert = 542.75 ft
Dnstream Invert = 542.15 ft
Horiz. Length = 113.00 ft
Barrel Length = 113.00 ft
Barrel Slope = .00531 ft/ft
OUTLET CONTROL DATA...
                          .0110
Mannings n =
Ke
                     =
                            .1000 (forward entrance loss)
Κb
                    = .005175 (per ft of full flow)
                   = .1000 (reverse entrance loss)
= .001 +/- ft
Kr
HW Convergence
INLET CONTROL DATA...
Equation form =
Inlet Control K = .0098
Inlet Control M = 2.0000
Inlet Control c = .03980
Inlet Control Y = .6700
T1 ratio (HW/D) = 1.158
T2 ratio (HW/D) = 1.304
Slope Factor = -.500
```

Use unsubmerged inlet control Form 1 equ. below T1 elev. submerged inlet control Form 1 equ. above T2 elev.

In transition zone between unsubmerged and submerged inlet control, interpolate between flows at T1 & T2...

At T1 Elev = 546.22 ft ---> Flow = 546.22 ft ---> Flow = 42.85 cfs 546.66 ft ---> Flow = 48.97 cfs At T2 Elev =

S/N: C21B02A06A82 The Isaacs Group PondPack Ver. 7.5 (786c) Compute Time: 21:07:45 Date: 06/18/2013 Type.... Outlet Input Data Page 6.14

Name.... PR 20

File.... P:\PONDPACK\13020\3RD SUBMITTAL\13020-PB.PPW

OUTLET STRUCTURE INPUT DATA

Structure ID = Structure Type = Weir-Rectangular # of Openings = 1 Crest Elev. = 551.75 ft Weir Length = 6.00 ft

Weir Coeff. = 3.100000

Weir TW effects (Use adjustment equation)

Structure ID = TW Structure Type = TW SETUP, DS Channel

FREE OUTFALL CONDITIONS SPECIFIED

CONVERGENCE TOLERANCES...

Maximum Iterations= 30 Min. TW tolerance = .01 ft
Max. TW tolerance = .01 ft
Min. HW tolerance = .01 ft
Max. HW tolerance = .01 ft
Min. Q tolerance = .10 cfs
Max. Q tolerance = .10 cfs

Name.... PR 20

File.... P:\PONDPACK\13020\3RD SUBMITTAL\13020-PB.PPW

RATING TABLE FOR ONE OUTLET TYPE

Structure ID = (Orifice-Circular)

Upstream ID = (Pond Water Surface)

DNstream ID = CV (Culvert-Circular)

Elev. ft	Device Q cfs	ft	Converge DS HGL ft	Next DS HGL ft	Error +/-ft		DS Chan. TW TW Error ft +/-ft
547.35	. 00	WS below a					Free Outfall
547.85	. 47		Free	543.04	.000	. 000	Free Outfall
548.35	. 82		Free	543.13	.000	.000	Free Outfall
548.85	1.06	548.85 H =1.25	Free	543.19	.000	.000	Free Outfall
549.25	1.21	549.25 H =1.65	Free	543.22	.000	.000	Free Outfall
549.35	1.25	549.35 H =1.75	Free	543.23	.000	.000	Free Outfall
549.85	1.42		Free	543.45	.000	.000	Free Outfall
550.35	1.57	550.35 H =2.75	Free	543.74	.000	.000	Free Outfall
550.85	1.70	550.85 H =3.25	Free	543.96	.000	. 000	Free Outfall
551.35	1.83	551.35 H =3.75	Free	544.08	.000	.000	Free Outfall
551.75	1.93	551.75 H =4.15	Free	544.15	.000	.000	Free Outfall
551.85	1.95		Free	544.21	.000	. 000	Free Outfall
552.35	2.06	552.35 H =4.75	Free	544.81	.000	. 000	Free Outfall
552.85	2.17		Free	545.66	.000	.000	Free Outfall
553.35	2.27	553.35 H =5.75	Free	546.82	.000	.000	Free Outfall
553.70	2.24	553.70 H =5.63	548.07	548.06	.009	.000	Free Outfall
55 3.85	2.08		549.01	549.01	.001	.000	Free Outfall
554.00	1.82	554.00 H =3.70	550.30	550.30	.003	. 000	Free Outfall

Name.... PR 20

File.... P:\PONDPACK\13020\3RD SUBMITTAL\13020-PB.PPW

RATING TABLE FOR ONE OUTLET TYPE

Structure ID = (Orifice-Circular) Upstream ID = (Pond Water Surface)
DNstream ID = CV (Culvert-Circular) Page 6.16

Pond WS. Elev. ft	Device Q cfs	(into) HW HGL ft	Converge DS HGL ft	DS HGL	DS HGL Error +/-ft	Q SUM Error +/-cfs	DS Cha TW ft	n. TW Error +/-ft
554.35	.00	554.35	554.35			.000		
554.85	.00	554.85	554.85	Full riser 547.26				
555.35	. 00	555.35	555.35	Full riser 555.35		Q=0 thi .000		
555.50	.00	555.50	555.50	Full riser 555.50		Q=0 thi		ng.
				Full riser				

Name.... PR 20

File.... P:\PONDPACK\13020\3RD SUBMITTAL\13020-PB.PPW

RATING TABLE FOR ONE OUTLET TYPE

Structure ID = (Inlet Box)

Upstream ID = (Pond Water Surface)
DNstream ID = CV (Culvert-Circular)

tlev. ft	Device Q cfs	(into) Co HW HGL [ft	onverge OS HGL ft	Next DS HGL ft	Error +/-ft	Q SUM Error +/-cfs	DS Chan. TW ft	Error +/-ft
547.35		 WS below an						
547.85	. 00						Free Out	fall
548.35	. 00						Free Out	fall
548.85	.00						Free Out	fall
549.25	. 00						Free Out	fall
549.35	.00						Free Out	fall
549.85	. 00	 WS below an					Free Out	fall
550.35	. 00	 WS below an			• • •		Free Out	fall
550.85	.00	WS below an			• • •	• • •	Free Out	fall
551.35	.00	 WS below an					Free Out	fall
551.75	.00	 WS below an					Free Out	fall
551.85	. 00	 WS below an	 invert;				Free Out	fall
552.35	.00	WS below an	<pre> invert;</pre>	no flow.	,		Free Out	fall
552.85	. 00	WS below an	invert;	no flow.			Free Out	fall
553.35	. 00	 WS below an	invert;	no flow.			Free Out	fall
553.70	. 00	WS below an	invert;	no flow.			Free Out	
553.85	2.64	Weir: H = .15	-)		.000		Free Out	
554.00	7.48	554.00 Weir: H = .30		550.30	.000	.000	Free Out	fall

Page 6.18

Name.... PR 20

File.... P:\PONDPACK\13020\3RD SUBMITTAL\13020-PB.PPW

RATING TABLE FOR ONE OUTLET TYPE

Structure ID = (Inlet Box)Upstream ID = (Pond Water Surface)
DNstream ID = CV (Culvert-Circular)

Pond WS. Elev. ft	Device Q cfs	(into) HW HGL ft	DS HGĽ	DS HGL	DS HGL Q SUM Error Error +/-ft +/-cfs	
554.35	108.84				.000 .000 to Downstream	
554.85	56.12		Free		.000 .000	
555.35	114.13				.000 .000 to Downstream	
555.50	116.16	555.50	555.50	555.50	.000 .000 to Downstream	Free Outfall

Name.... PR 20

File.... P:\PONDPACK\13020\3RD SUBMITTAL\13020-PB.PPW

RATING TABLE FOR ONE OUTLET TYPE

Structure ID = (Orifice-Circular) Upstream ID = (Pond Water Surface)
DNstream ID = CV (Culvert-Circular)

tlev. ft	Device Q cfs		DS HGL ft	DS HGL Q Error E +/-ft +/	rror -cfs	DS Chan. TW TW Error	
547.35	.00					Free Outfall	
547.85	. 00			•		Free Outfall	
548.35	.00	WS below an invert;				Free Outfall	
548.85	.00	WS below an invert;	 no flow.	• • •		Free Outfall	
549.25	. 00	WS below an invert;	no flow.			Free Outfall	
549.35	. 04	549.35 Free CRIT.DEPTH CONTROL	543.23 Vh= .026f			Free Outfall CRIT.DEPTH	
549.85	1.24	CRIT.DEPTH CONTROL	543.45 Vh= .161f	.000 t Dcr=		Free Outfall CRIT.DEPTH	
550 .35	3.66	CRIT.DEPTH CONTROL	Vh= .328f	.000 t Dcr= .	.000 772ft	Free Outfall CRIT.DEPTH	
550.85	5.83	H = .97			.000	Free Outfall	
551.35	7.17	H =1.47				Free Outfall	
551 .75		551.75 Free H =1.88	544.15			Free Outfall	
551.85		551.85 Free H =1.97	544.21			Free Outfall	
552.35	9.29	H =2.47	544.81			Free Outfall	
552.85	10.19	H =2.97	545.66			Free Outfall	
553.35	11.01	553.35 Free H =3.47	546.82			Free Outfall	
553.70	11.55	553.70 Free H =3.83	548.06			Free Outfall	
553.85	11.78	H =3.97				Free Outfall	
554.00	11.37	554.00 550.30 H =3.70	550.30	.003	.000	Free Outfall	

S/N: C21B02A06A82 S/N: C21B02A06A82 The Isaacs Group PondPack Ver. 7.5 (786c) Compute Time: 21:07:45 Date: 06/18/2013

Name.... PR 20

File.... P:\PONDPACK\13020\3RD SUBMITTAL\13020-PB.PPW

RATING TABLE FOR ONE OUTLET TYPE

Structure ID = (Orifice-Circular)

Upstream ID = (Pond Water Surface)
DNstream ID = CV (Culvert-Circular)

Page 6.20

Pond WS. Elev. ft	Device Q cfs	(into) HW HGL ft	Converge DS HGL ft	Next DS HGL ft	DS HGL Error +/-ft	Q SUM DS Chan. TW Error TW Error +/-cfs ft +/-ft
554.35	.00	554.35	554.35	554.35	.000	.000 Free Outfall
			331.33			Q=0 this opening.
554.85	.00	554.85	554.85	547.26		.000 Free Outfall
					flow.	Q=O this opening.
555.35	. 00	555.35	555.35	555.35	.000	
					flow.	Q=O this opening.
555.50	. 00	555.50	555.50	555.50	. 000	
				Full riser	flow.	Q=O this opening.

Page 6.21 Name.... PR 20

File.... P:\PONDPACK\13020\3RD SUBMITTAL\13020-PB.PPW

RATING TABLE FOR ONE OUTLET TYPE

Structure ID = (Weir-Rectangular) Upstream ID = (Pond Water Surface)
DNstream ID = TW (Pond Outfall)

WS Elev,D	evice Q	Tail Water	Notes
WS Elev. ft	Q cfs	TW Elev Converg	e Computation Messages
547.35	. 00	Free Outfall	WS below an invert; no flow.
547.85	. 00	Free Outfall	WS below an invert; no flow.
548.35	. 00	Free Outfall	WS below an invert; no flow.
548.85	.00	Free Outfall	WS below an invert; no flow.
549.25	.00	Free Outfall	WS below an invert; no flow.
549.35	. 00	Free Outfall	WS below an invert; no flow.
549.85	.00	Free Outfall	WS below an invert; no flow.
550.35	.00	Free Outfall	WS below an invert; no flow.
550.85	. 00	Free Outfall	WS below an invert; no flow.
551.35	. 00	Free Outfall	WS below an invert; no flow.
551.75	. 00	Free Outfall	WS below an invert; no flow.
551.85	. 00	Free Outfall	WS below an invert; no flow.
552.35	. 00	Free Outfall	WS below an invert; no flow.
552.85	. 00	Free Outfall	WS below an invert; no flow.
55 3.35	. 00	Free Outfall	WS below an invert; no flow.
553.70	.00	Free Outfall	WS below an invert; no flow.
553.85	. 00	Free Outfall	WS below an invert; no flow.
554.00	. 00	Free Outfall	WS below an invert; no flow.
554.35	16.05	Free Outfall	H=.35; Htw=.00; Qfree=16.05;
554.85	60.73	Free Outfall	H=.85; Htw=.00; Qfree=60.73;
555.35	121.56	Free Outfall	H=1.35; Htw=.00; Qfree=121.56;
555.50	142.38	Free Outfall	H=1.50; Htw=.00; Qfree=142.38;

Page 6.22

Name.... PR 20

File.... P:\PONDPACK\13020\3RD SUBMITTAL\13020-PB.PPW

RATING TABLE FOR ONE OUTLET TYPE

Structure ID = CV (Culvert-Circular)

Mannings open channel maximum capacity: 61.78 cfs

UPstream ID's= , , ,
DNstream ID = TW (Pond Outfall)

Pond WS. Elev. ft	Device Q cfs	(into) Convergo HW HGL DS HGL ft ft	DS HGL ft	DS HGL Error +/-ft	Error +/-cfs	DS Chan. TW TW Error ft +/-ft
547.35	.00					Free Outfall
547.85	. 47		Free	. 000	.000	Free Outfall
548.35	. 82	CRIT.DEPTH CONTROL 543.13 Free CRIT.DEPTH CONTROL	Free	.000		CRIT.DEPTH Free Outfall
548.85	1.06		Free	.000	.280ft .002 .318ft	CRIT.DEPTH Free Outfall CRIT.DEPTH
549.25	1.21		Free	.000		Free Outfall CRIT.DEPTH
549.35	1.29	543.23 Free CRIT.DEPTH CONTROL	Free	. 000		Free Outfall CRIT.DEPTH
549.85	2.66	543.45 Free CRIT.DEPTH CONTROL	Free	. 000		Free Outfall CRIT.DEPTH
550.35	5.23		Free	.000		Free Outfall CRIT.DEPTH
550.85	7.53	543.96 Free CRIT.DEPTH CONTROL	Free	.000		Free Outfall CRIT.DEPTH
551.35	9.00	544.08 Free CRIT.DEPTH CONTROL	Free	.000		Free Outfall CRIT.DEPTH
551.75	10.00	544.15 Free CRIT.DEPTH CONTROL	Free	. 000		Free Outfall
551.85	10.83	544.21 Free CRIT.DEPTH CONTROL	Free	. 000		Free Outfall
552.35	20.00	544.81 Free INLET CONTROL	Free	. 000		Free Outfall
552.85	33.81	545.66 Free INLET CONTROL	Free Equ.1: HW =	. 000		Free Outfall
553.35	50.93	546.82 Free INLET CONTROL	Free Submerged:	. 000	. 007	
553.70	64.44	548.06 Free INLET CONTROL	Free Submerged:	. 000	. 002	Free Outfall
553.85	73.10	549.01 Free INLET CONTROL	Free	.000	. 002	Free Outfall
554.00	83.45	550.30 Free INLET CONTROL	Submerged: Free Submerged:	HW =6. .000 HW =7.	. 007	Free Outfall

S/N: C21B02A06A82 The Isaacs Group

PondPack Ver. 7.5 (786c) Compute Time: 21:07:45 Date: 06/18/2013

Page 6.23

Name.... PR 20

File.... P:\PONDPACK\13020\3RD SUBMITTAL\13020-PB.PPW

RATING TABLE FOR ONE OUTLET TYPE

Structure ID = CV (Culvert-Circular)

Mannings open channel maximum capacity: 61.78 cfs

UPstream ID's= , , ,
DNstream ID = TW (Pond Outfall)

Pond WS. Elev. ft	Device Q cfs	(into) C HW HGL ft	onverge DS HGL ft		DS HGL Q SUM Error Error +/-ft +/-cfs	DS Chan. TW TW Error ft +/-ft
554.35	109.77	554.35 INLET CONTR		Free Submerged:	.000 .000 HW =11.60	Free Outfall
554.85	56.12	547.26 INLET CONTR	Free	Free		Free Outfall
555.35	115.35	555.35 INLET CONTR	Free	Free Submerged:		Free Outfall
555.50	116.16		Free	Free Submerged:	.000 .000 HW =12.75	Free Outfall

Name.... PR 20

Page 6.24

File.... P:\PONDPACK\13020\3RD SUBMITTAL\13020-PB.PPW

RATING TABLE FOR ONE OUTLET TYPE

Structure ID = (Weir-Rectangular) Upstream ID = (Pond Water Surface)
DNstream ID = CV (Culvert-Circular)

Elev. ft	Q	(into) (HW HGL ft	DS HGL ft	DS HGL	Error +/-ft	Q SUM Error +/-cfs	TW ft	Error
547.35		 WS below ar					Free Ou	
547.85	.00	WS below an					Free Ou	tfall
548.35	.00						Free Ou	tfall
548.85	. 00	WS below an					Free Ou	tfall
549.25	. 00	WS below an					Free Ou	tfall
549.35	.00						Free Ou	tfall
549.85	.00						Free Ou	tfall
550.35	.00	WS below ar					Free Ou	tfall
550.85	.00	WS below ar					Free Ou	tfall
551.35	. 00	WS below ar					Free Ou	tfall
551.75	.00	 WS below an					Free Ou	tfall
551.85	. 59		Free	544.21	.000	.000	Free Ou	tfall
552.35	8.64		Free	544.81	. 000	.000	Free Ou	tfall
552.85	21.46		Free	545.66	.000	.000	Free Ou	tfall
553.35	37.64	553.35 H=1.60; Htv	Free	546.82	.000	.000	Free Ou	tfall
553.70	50.65	553.70 H=1.95; Htv	Free	548.06	.000	. 000	Free Ou	tfall
553.85	56.60	553.85 H=2.10; Htv	Free	549.01	.000	. 000	Free Ou	tfall
554.00	62.78	554.00 H=2.25; Htv	Free	550.30	.000	.000	Free Ou	tfall

S/N: C21B02A06A82 The Isaacs Group

PondPack Ver. 7.5 (786c) Compute Time: 21:07:45 Date: 06/18/2013

Name.... PR 20

File.... P:\PONDPACK\13020\3RD SUBMITTAL\13020-PB.PPW

RATING TABLE FOR ONE OUTLET TYPE

Structure ID = (Weir-Rectangular) Upstream ID = (Pond Water Surface)
DNstream ID = CV (Culvert-Circular) Page 6.25

Pond WS. Elev. ft	Device Q cfs	(into) HW HGL ft	Converge DS HGL ft	DS HGL		Q SUM Error +/-cfs	DS Chan TW ft	. TW Error +/-ft
554.35	.00	554.35	554.35					
554.85	. 00	554.85	554.85	Full riser 547.26				
		555 35		Full riser	flow.	Q=O thi	s openin	g.
555.35	. 00	555.35	555.35	555.35 Full riser			Free Ou s openin	
555.50	.00	.00	555.50	555.50	. 000	.000	Free Ou	ťfall
				Full riser	TLOW.	y=0 thi	s openin	g.

5/N: C21B02A06A82 The Isaacs Group PondPack Ver. 7.5 (786c) Compute Time: 21:07:45 Date: 06/18/2013

Name.... PR 20

File.... P:\PONDPACK\13020\3RD SUBMITTAL\13020-PB.PPW

**** COMPOSITE OUTFLOW SUMMARY ****

WS Elev, Total Q	Converge	Notes
Elev. Q ft cfs	TW Elev Error	Contributing Structures
547.35 .00 547.85 .47 548.35 .82 549.25 1.21 549.35 1.29 549.85 2.66 550.35 5.23 550.85 7.53 551.35 9.00 551.85 10.83 552.35 20.00 552.85 33.81 553.35 50.93 554.00 83.45 554.35 125.81 554.85 116.85 555.35 236.91 555.50 258.53	Free Outfall	(no Q: ,,,,CV,) ,CV (no Q: ,,,) ,CV (no Q: ,,,) ,CV (no Q: ,,,) ,CV (no Q: ,,,) ,,CV (no Q: ,,) ,,CV, (no Q: ,,) ,,CV (no Q: ,,)

Project Gekko

Paragon Way Rock Hill, South Carolina

Storm Drainage Pipe Sizing Calculations

Storm pipe designed to handle the 25 year flow.

Rational Method used to determine the 25 year flow.

```
AREA A16
  A= 1.33 acres
  I= 7.91 in/hour
  C = 0.98
  Q = (C)(I)(A) =
                             10.3 cfs
  Q (total)=
                             10.3 cfs
  Capacity of
                                    24 " HDPE @ 0.52% = 21.2 cfs > 10.3 cfs
AREA A15
  A= 1.33 acres
  I= 7.91 in/hour
  C= 0.98
 Q = (C)(I)(A) =
                             10.3 cfs
 Q (total)=
                             20.6 cfs
                                    24 " HDPE @ 0.52% = 21.2 cfs > 20.6 cfs
 Capacity of
AREA A14
 A= 1.33 acres
  I= 7.91 in/hour
 C= 0.98
 Q = (C)(I)(A) =
                             10.3 cfs
 Q (total)=
                             30.9 cfs
 Capacity of
                                    30 " HDPE @ 0.52% = 38.4 cfs > 30.9 cfs
AREA A13
 A= 1.32 acres
  l= 7.91 in/hour
 C= 0.98
 Q = (C)(I)(A) =
                             10.2 cfs
 Q (total)=
                             41.2 cfs
 Capacity of
                                    36 " HDPE @ 0.52% = 62.5 cfs > 41.2 cfs
AREA A12
 A= 1.32 acres
  I= 7.91 in/hour
 C = 0.98
 Q = (C)(I)(A) =
                             10.2 cfs
 Q (total)=
                             51.4 cfs
 Capacity of
                                    36 " HDPE @ 0.52% = 62.5 cfs > 51.4 cfs
AREA A11
 A= 1.34 acres
  I= 7.91 in/hour
 C = 0.98
 Q = (C)(I)(A) =
                             10.4 cfs
 Q (total)=
                             61.8 cfs
 Capacity of
                                   42 " HDPE @ 0.52% = 94.3 cfs > 61.8 cfs
```

Storm pipe designed to handle the 25 year flow.

Rational Method used to determine the 25 year flow.

```
AREA A10
  A= 1.36 acres
  I= 7.91 in/hour
  C = 0.98
  Q = (C)(I)(A) =
                             10.5 cfs
  Q (total)=
                             72.3 cfs
 Capacity of
                                    42 "HDPE @ 0.52% = 94.3 cfs > 72.3 cfs
AREA A9
  A= 1.40 acres
  l= 7.91 in/hour
 C= 0.98
 Q = (C)(I)(A) =
                             10.9 cfs
 Q (total)=
                             83.2 cfs
 Capacity of
                                    42 " HDPE @ 0.52% = 94.3 cfs > 83.2 cfs
AREA A8
 A= 1.47 acres
  I= 7.91 in/hour
 C= 0.98
 Q = (C)(I)(A) =
                             11.4 cfs
 Q (total)=
                             94.6 cfs
 Capacity of
                                    48 " HDPE @ 0.52% = 134.7 cfs > 94.6 cfs
AREA A7
 A= 1.62 acres
  l= 7.91 in/hour
 C = 0.98
 Q = (C)(I)(A) =
                             12.6 cfs
 Q (total)=
                             107.1 cfs
 Capacity of
                                    48 " HDPE @ 0.51% = 133.4 cfs > 107.1 cfs
AREA A6
 A= 2.53 acres
  l= 7.91 in/hour
 C = 0.98
 Q = (C)(I)(A) =
                            19.6 cfs
 Q (total)=
                             126.7 cfs
 Capacity of
                                   48 " HDPE @ 0.50% = 132.1 cfs > 126.7 cfs
AREA A5
 A= 1.44 acres
  I= 7.91 in/hour
 C = 0.98
 Q = (C)(I)(A) =
                             11.2 cfs
 Q (total)=
                             137.9 cfs
 Capacity of
                                   54 " HDPE @ 0.51% = 182.6 cfs > 137.9 cfs
```

Storm pipe designed to handle the 25 year flow.

Rational Method used to determine the 25 year flow.

```
AREA B10
  A= 1.46 acres
  I= 7.91 in/hour
 C= 0.98
 Q = (C)(I)(A) =
                             11.3 cfs
 Q (total)=
                             11.3 cfs
 Capacity of
                                    24 " HDPE @ 0.52% = 21.2 cfs > 11.3 cfs
AREA B9
 A= 1.38 acres
  l= 7.91 in/hour
 C = 0.98
 Q = (C)(I)(A) =
                             10.7 cfs
 Q (total)=
                             22.0 cfs
 Capacity of
                                    30 " HDPE @ 0.53% = 38.8 cfs > 22.0 cfs
AREA B8
 A= 1.32 acres
  l= 7.91 in/hour
 C= 0.98
 Q = (C)(I)(A) =
                             10.2 cfs
 Q (total)=
                             32.2 cfs
 Capacity of
                                   30 " HDPE @ 0.51% = 38.1 cfs > 32.2 cfs
AREA B7
 A= 1.32 acres
  I= 7.91 in/hour
 C= 0.98
 Q = (C)(I)(A) =
                             10.2 cfs
 Q (total)=
                             42.5 cfs
 Capacity of
                                   36 " HDPE @ 0.51% = 61.9 cfs > 42.5 cfs
AREA B6
 A= 1.32 acres
  l= 7.91 in/hour
 C= 0.98
 Q = (C)(I)(A) =
                             10.2 cfs
 Q (total)=
                             52.7 cfs
 Capacity of
                                   36 " HDPE @ 0.51% = 61.9 cfs > 52.7 cfs
AREA B5
 A= 1.32 acres
  I= 7.91 in/hour
 C = 0.98
 Q = (C)(I)(A) =
                             10.2 cfs
 Q (total)=
                             62.9 cfs
 Capacity of
                                   42 " HDPE @ 0.51% = 93.4 cfs > 62.9 cfs
```

Storm pipe designed to handle the 25 year flow.

Rational Method used to determine the 25 year flow.

```
AREA B4
  A= 1.32 acres
  I= 7.91 in/hour
 C= 0.98
 Q = (C)(I)(A) =
                              10.2 cfs
 Q (total)=
                              73.2 cfs
 Capacity of
                                    42 "HDPE @ 0.51% = 93.4 cfs > 73.2 cfs
AREA B3
 A= 1.32 acres
  I= 7.91 in/hour
 C= 0.98
                              10.2 cfs
 Q = (C)(I)(A) =
 Q (total)=
                              83.4 cfs
 Capacity of
                                    42 " HDPE @ 0.51% = 93.4 cfs > 83.4 cfs
AREA B2
 A= 1.32 acres
  l= 7.91 in/hour
 C= 0.98
 Q = (C)(I)(A) =
                              10.2 cfs
                              93.6 cfs
 Q (total)=
                                    48 " HDPE @ 0.51% = 133.4 cfs > 93.6 cfs
 Capacity of
AREA B1
 A= 1.32 acres
  I= 7.91 in/hour
 C = 0.98
 Q = (C)(I)(A) =
                              10.2 cfs
 Q (total)=
                              103.9 cfs
 Capacity of
                                    48 " HDPE @ 0.51% = 133.4 cfs > 103.9 cfs
AREA A4
 A= 1.82 acres
  I= 7.91 in/hour
 C= 0.98
 Q = (C)(I)(A) =
                              14.1 cfs
 Q (total)=
                             255.9 cfs
                                    66 " RCP @
 Capacity of
                                                    0.52\% = 262.4 \text{ cfs} > 255.9 \text{ cfs}
```

Storm pipe designed to handle the 25 year flow.

Rational Method used to determine the 25 year flow.

```
AREA C15
  A= 1.31 acres
  I= 7.91 in/hour
 C = 0.98
 Q = (C)(I)(A) =
                             10.2 cfs
 Q (total)=
                              10.2 cfs
 Capacity of
                                    24 " HDPE @ 0.52% = 21.2 cfs > 10.2 cfs
AREA C14
 A= 1.31 acres
  I= 7.91 in/hour
 C= 0.98
 Q = (C)(I)(A) =
                             10.2 cfs
 Q (total)=
                             20.3 cfs
 Capacity of
                                    24 " HDPE @ 0.52% = 21.2 cfs > 20.3 cfs
AREA C13
 A= 1.65 acres
  l= 7.91 in/hour
 C= 0.98
 Q = (C)(I)(A) =
                             12.8 cfs
 Q (total)=
                             33.1 cfs
 Capacity of
                                    30 " HDPE @ 0.51% = 38.1 cfs > 33.1 cfs
AREA C12
 A= 1.48 acres
  l= 7.91 in/hour
 C = 0.98
 Q = (C)(I)(A) =
                             11.5 cfs
 Q (total)=
                             44.6 cfs
 Capacity of
                                    36 " HDPE @ 0.50% = 61.3 cfs > 44.6 cfs
AREA C11
 A= 1.48 acres
  I= 7.91 in/hour
 C = 0.98
 Q = (C)(I)(A) =
                             11.5 cfs
 Q (total)=
                             56.0 cfs
 Capacity of
                                    36 "HDPE @ 0.54\% = 63.7 \text{ cfs} > 56.0 \text{ cfs}
AREA C10B
 A= 0.35 acres
  l= 7.91 in/hour
 C= 0.98
 Q = (C)(I)(A) =
                             2.7 cfs
 Q (total)=
                             58.8 cfs
 Capacity of
                                    36 " HDPE @ 0.52% = 62.5 cfs > 58.8 cfs
```

Storm pipe designed to handle the 25 year flow.

Rational Method used to determine the 25 year flow.

A minimum time of concentration of 5 minutes has been assumed in determining a rainfall intensity of 7.91 for the 25 year design storm.

AREA C10A A= 0.00 acres I= 7.91 in/hour C= 0.98

Q = (C)(I)(A) = 0.0 cfsQ (total) = 58.8 cfs

Capacity of 36 " HDPE @ 0.51% = 61.9 cfs > 58.8 cfs

AREA C9

A= 0.38 acres I= 7.91 in/hour C= 0.98

Q = (C)(I)(A) = 2.9 cfs Q (total) = 61.7 cfs

Capacity of 42 " HDPE @ 0.50% = 92.5 cfs > 61.7 cfs

AREA C8

A= 0.30 acres = 7.91 in/hour C= 0.98

Q = (C)(I)(A) = 2.3 cfs Q (total) = 64.0 cfs

Capacity of 42 " HDPE @ 0.56% = 97.9 cfs > 64.0 cfs

AREA C7

A= 0.77 acres |= 7.91 in/hour C= 0.98

Q = (C)(I)(A) = 6.0 cfs Q (total) = 70.0 cfs

Capacity of 42 " HDPE @ 0.52% = 94.3 cfs > 70.0 cfs

Capacity of

Storm pipe designed to handle the 25 year flow.

Rational Method used to determine the 25 year flow.

A minimum time of concentration of 5 minutes has been assumed in determining a rainfall intensity of 7.91 for the 25 year design storm.

```
AREA C6
  A= 1.75 acres
  I= 7.91 in/hour
 C = 0.98
 Q = (C)(I)(A) =
                             13.6 cfs
 Q (total)=
                             83.6 cfs
 Capacity of
                                    42 " HDPE @ 0.50% = 92.5 cfs > 83.6 cfs
AREA C4
 A= 1.21 acres
  I= 7.91 in/hour
 C = 0.98
 Q = (C)(I)(A) =
                             9.4 cfs
 Q (total)=
                             9.4 cfs
 Capacity of
                                    18 " HDPE @ 0.83% = 12.4 cfs > 9.4 cfs
AREA C5
 A= 1.26 acres
  I= 7.91 in/hour
 C= 0.98
 Q = (C)(I)(A) =
                             9.8 cfs
 Q (total)=
                             102.7 cfs
```

48 " HDPE @ 0.60% = 144.7 cfs > 102.7 cfs